<u>Chapt</u>	er 13	CHEMICAL BON	IDING	PAGE 1
<u>I ELE</u>	CTRONS A	ND CHEMICAL BO	NDING:	
Α.	Combining A	toms Through Che	mical Bonding:	
	1.Chemical	bonding is the	0	f
	to form n	ew substances.		
	2. The prop	perties of the new	substances ar	e
	3. An inter	action that	2 atoms to	gether is called
	a	<u> </u>	·	
Β.	Electron Nu	umber and Organize	ation:	
	1. Remen	nber,,,atoms have	no charge, so	the atomic
		also is the	number of	
	2. Only e	lectrons in the	ene	rgy level make
	chemic	al		
	3. Electr	ons in the	energy lev	vel are called
		elect	rons.	
	The first energy level is close to the nucleu and can hold to 2 electron	rgy st up s.	 Electrons will begin second energy level the first level is full. energy level can ho electrons. The third energy level can ho only 7 electrons, so a total of 17 electron level of the atom is 	filling the el only after The second Id up to 8 evel in this e atom has the atom has ons. This outer a not full.
С.	<u>To Bond or</u>	Not to Bond:		
	1.The _	of e	lectrons in the	e outer level
	deterr	nine whether the a	tom	

<u>Ch. 13</u>	page 2
2.	Atoms that have valence electrons do bond!
3.	Atoms bond by,, or
	electrons to have a
	outer energy level.
II <u>IONIC</u>	BONDS:
A. <u>Fo</u>	rming Ionic Bonds:
	1. An ionic bond forms when electrons are
	from one to another.
:	2. During bonding, or valence electrons
	are transferred.
	3. When an atom gains or loses an it is no longer
	, instead it is
	4. An atom that has a charge is called an
B. <u>For</u>	ming Positive Ions:
\square	1. An atom that <u>loses</u> an electron becomes
5	because now it has fewer than
N	2. Metals have valence electrons, so they
44	them easily.
B. <u>Fo</u>	rming Negative Ions:
	1. An atom that gains an electron becomes
	because now it has more than
T	2. Nonmetals have an almost outer energy level, so
	they tend to electrons to get a full outer shell.
<u> </u>	

C. Gain or Lose?:

Element		Metal (M) Nonmetal (N)	Electro outer s	ns in hell	Lo Ele	se or Gain ectrons?	<u>Ionic</u>
OXYGEN	N							e e
GOLD								- <u>-</u> Practi
BROMI	NE							ce:
IRON								
	Element	Metal or	# o	f e's in	Gain or		Ion Charge	_
PHOSPH	IORUS	Nonmetal	last	shell	Lose?		-	
	Nickel							
	Iodine							
	Sulfur							
	Cesium							
E. <u>I</u>	onic Comp	ounds:	1					
1.	When ior	nic bonds form	n, the	e	of	elec	trons lost by t	the
	atoi	ms equals the	numt	oer	by t	he r	ionmetal atoms	•
2.	The	is no	w					
	because ·	the charges o	of the	:	(Na		+	
		_ cancel each	othe	r.		Ŋ		
	a. The i	ons stay toge [.]	ther		(1	**		
	because	2	at	tract ‼	ŧ(Na [†]		

D.

III <u>Covalent and Metallic Bonds:</u>

- A. <u>Covalent Bonds:</u>
 - 1. A covalent bond forms when atoms _____ one or more pairs of electrons.
 - 2. This type of bond happens usually with _____.
 - 3. Below is a picture of two hydrogen atoms in a covalent bond.

- 4. Each hydrogen _____ its one electron with the other.
- 5. Substances made with covalent bonds are made up of
- A molecule consists of _____ or more atoms joined in a definite _____.
- 7. The hydrogen molecule shown above is a very _____molecule.
- Molecules made up of _____ atoms of the same element are called _____ molecules.
- Elements found in nature as diatomic molecules are called
 ______ elements. Examples:
- 10. A drawing of a _____ bond only shows the _____ shell.

_ ____ __

11. Example: Hydrochloric acid HCl H Cl H Cl

By sharing, H now has _____ electrons & Cl has ____electrons.

B. Practice Time:

Use an X for the electrons of one element and a O for the electrons of a different element. That makes it less confusing !

3. H₂O

4. You can also use an

electron-dot diagram that

shows the _____ electrons

but not the _____

Instead of different colors,

still show X's and O's

- 5. Your turn !!!
 - a) PI₃

This electron-dot diagram for water shows only the outermost level of electrons for each atom. But you still see how the atoms share electrons.

b) H₂Se

<u>Ch. 15 Page 7</u>
IV IONIC AND COVALENT COMPOUNDS:
A. Ionic Compounds and Their Properties:
1. Compounds made with bonds are ionic
2. <u>Brittleness</u> :
a) Ionic compounds are made
in a lattice.
b) When hit, the pattern
which causes it to
3. <u>High Melting Points</u> :
a) Ionic bonds are so melting points are
b) Most ionic compounds are are room temperature.
4. <u>Solubility and Electrical Conductivity</u> :
a) They dissolve in water.
b) The that forms when an ionic compound
dissolves in can electricity.
B. Covalent Compounds and Their Properties:
1. Most are covalent compounds.
2. Covalent bonds are than ionic bonds.
3. Remember, covalent bonds form
4. <u>Low Solubility</u> :
a) Many covalent compounds do dissolve well in water.
b) Examples: * Carbon dioxide in soda * Oil in vinegar
SON Line

5. Low Melting Points:

a) Since covalent bonds are _____ they melt _____.

6. <u>Electrical Conductivity</u>:

a) Some _____ in water, but most don't.

b) If they do dissolve, the solution has _____

molecules, so they _____ conduct electricity.

C. Comparison Table:

IONIC BONDS	COVALENT BONDS

V FORMING NEW SUBSTANCES: A. Chemical Reaction Signs: 1. 2. 3. 4. 5. Most important:_____ B. Bonds: Holding Molecules Together: 1. How do new substances form in a chemical reaction? a) First: b) Then: c) Then : VI CHEMICAL FORMULAS: A. What is a chemical formula? 1. A _____ way to use chemical _____ and _____ to represent a _____. B. Rules for writing formulas: 1. Write the _____ ion first. 2. Write the _____ ion second. 3. The negative ion ends in . 4. The sum of the ion charges must be _____. 5. Some elements (_____ metals) can have more than _____ ion charge. C. Example: 1. Lithium is in Group _____ and will _____ its one electron. 2. If it loses its one electron, its charge will be _____.

3. It is written as follows:_____

- D. Formula Example:
 - 1. Lithium ion: _____ Chlorine ion: _____

Name of compound:_____

2. Potassium ion:_____ Oxygen ion:_____

Name of compound:_____

E. Formula Table:

Ions	Cl 1-	O ²⁻	S ²⁻	N ³⁻
Li ¹⁺				
Cu ¹⁺				
K ¹⁺				
Ba ²⁺				
Zn 2+				

F. Polyatomic Ions:

- 1. A group of _____ that act as one _____.
- 2. When writing the formula, put a _____ around the polyatomic ion and then write the _____ outside of it.
- 3. Example: Ca ²⁺ NO₃ ¹⁻

Compound Name*:_____ (endings don't change!)

G. <u>Oxidation Table</u>: The table below is used as a reference. BUT !! You can still figure out ion charges with the periodic table!

H. More Practice !!!

1. Potassium and Iodine:

Formula?_____

Name?_____

2. Zinc and Bromine:

Formula?_____

Name?_____

3. Aluminum and Sulfate:

Formula?_____

Name?_____

4. Magnesium and Phosphate:

Formula?_____

Name?_____

- I The Easier Method: (Criss Cross)
 - 1. Ba²⁺ Cl¹⁻
 - 2. Na ¹⁺ O²⁻

3. Ca²⁺ PO₄ ³⁻

4. Al ³⁺ S ²⁻

<u>Ch. 14</u>

VII <u>CHEMICAI</u>	LEQUATIONS:		
A. <u>TERM</u>	<u>S:</u>		
1. A (CHEMICAL EQUAT	ION: uses chemic	al
and	۱ a	s a shortcut to de	escribe a chemical
2. RE	ACTANTS: The	mo	iterials in a chemical
	·	They are tound of	from a reaction
J. 1 K	out one found on the		nom a reaction.
	The formulas of the reactants are written before the arrow. $\mathbf{C+O}_2^{-}$	The formulas of the products are written after the arrow. CO2 The arrow, also called the <i>yields sign</i> , separates the formu-	1
B. <u>Equatio</u>	ns Must be Balance	las of the reactants from the formulas of the products.	
1. Ato	oms are in a reacti	ion are NEVER	
or _			
2. Eve	ery atom in the	I	becomes part of
th	e	·	
3. W	'hen writing a chem	nical equation, mal	ke sure
**	the	_ of atoms of eacl	n element in the
		equals the nu	mber of
	of those elements	s in the	

h. 14	Page 14
4. Lavoisier (in the 1700's) w	ork led to the
of	of
5. It states that	is neither
or	
C. How to Balance an Equation:	
1. To balance an equation, yo	ou must use
2. Coefficients are used in _	of symbols & formulas.
3. A coefficient tells the	
* number of	* number of
4 H ₂ O	
water	
hydrogen	
oxygen	
4. When balancing an equation	:
* ONLY CHANGE THE	.
* NEVER CHANGE THE	
5. EXAMPLES:	
a) Sodium plus chlorine yields	sodium chloride
Na + Cl ₂	> NaCl
b) Potassium plus Bromine yie	lds potassium bromide
K +Br ₂	→KBr
c) Carbon plus chlorine yields	carbon tetrachloride.
C +Cl ₂	CCl₄

h) $AgNO_3 + H_2SO_4 \rightarrow Ag_2SO_4 + HNO_3$

VIII TYPES OF CHEMICAL REACTIONS:

A. Synthesis Reactions:

1. A reaction in which _____ or more substances _____

to form one _____ compound.

- 2. $A + B \implies AB$
- 3. Examples:
 - a)_____

B. <u>Decomposition Reactions:</u>

1. A reaction in which a _____ compound

- C. Single-Displacement Reactions:
 - 1. An element _____ another

element that is part of a _____.

- 3. Examples:
 - a)_____

- D. <u>Double-Displacement Reactions</u>:
 - 1. A reaction in which _____ from ____ compounds

_____ places.

- 2. AB + CD ==> AD + CB
- 3. Examples:
 - a)_____ b)

IX ENERGY AND RATES OF CHEMICAL REACTIONS:

A. <u>Reactions and Energy</u>:

- 1. Chemical _____ is part of _____ chemical reactions.
- 2. Energy is needed to _____ bonds in the reactants.
- 3. As new bonds form in the products, energy is _____.
- 4. By _____ both above, you can decide if energy is

_____ or _____ in the overall reaction.

B. Exothermic Reaction:

- 1. A chemical reaction in which energy is _____.
- The energy released is often written as a ______.

 $2 \text{ Na} + Cl_2 \implies 2 \text{ NaCl} + energy$

3. The temperature goes _____.

C. Endothermic Reaction:

- 1. A chemical reaction in which energy is _____.
- 2. The energy that is taken in is often written as a _____.

 $2 H_2O$ + energy \longrightarrow $2H_2$ + O_2

- 3. The temperature goes _____.
- 4. Photosynthesis is an endothermic reaction.
 - $6 CO_2 + 6 H_2O + energy \implies C_6H_{12}O_6 + 6 O_2$

- D. Rate of Reaction.
 - 1. The _____ at which new particles form is called the

_____ of _____.

E. Factors That Increase the Rate of Reaction:

- 1. <u>High Temperature</u>
 - a) At high temperatures, particles of reactants

move _____ and _____ often.

2. High Concentration

a) When there is a high concentration,

there is a _____distance between

reactant particles, and they _____

into each other _____.

3. More Surface Area

a) Greater surface area exposes _____ reactant

particles to other _____ particles.

4. <u>Catalyst</u>

a) A substance that _____ a reaction without

being permanently _____.

b) An inhibiter is the opposite. It _____ or

_____ a chemical reaction.

* An example:_____